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ABSTRACT: Presented here are several data sets that gather information
collected from the labels of the FDA approved drugs: their molecular
structures and those of the described active metabolites, their associated
pharmacokinetics and pharmacodynamics data, and the history of their
marketing authorization by the FDA. To date, 1852 chemical structures
have been identified with a molecular weight less than 2000 of which 492
are or have active metabolites. To promote the sharing of data, the original
web server was upgraded for browsing the database and downloading the
data sets (http://chemoinfo.ipmc.cnrs.fr/edrug3d). It is believed that the
multidimensional chemistry-oriented collections are an essential resource
for a thorough analysis of the current drug chemical space. The data sets are envisioned as being used in a wide range of
endeavors that include drug repurposing, drug design, privileged structures analyses, structure−activity relationship studies, and
improving of absorption, distribution, metabolism, and elimination predictive models.

KEYWORDS: FDA-approved drugs, active metabolites, pharmacokinetics, pharmacodynamics, data sets,
structure−activity relationships, cheminformatics

Approved drugs are the most widely studied small
molecules for their function and effects on humans as

well as for what the body’s physiology does to the molecules.
They are a rich source of information to get insight into which
properties are required for a molecule to be an administered
drug and to optimize the search for new therapeutics. Drugs are
characterized by two main properties: their pharmacodynamics
(PD) and their pharmacokinetics (PK). The pharmacody-
namics summarizes the mechanism of action, the biological
targets, and their binding affinities. The pharmacokinetics
informs on the fate of the therapeutic agent in the body and is
characterized by its absorption, distribution, metabolism, and
elimination (ADME). ADME properties represent whole body
pharmacokinetics that integrates the numerous events of
interaction between the drug and the organism molecular
components such as proteins and membranes. ADME
parameters are represented by the bioavailability (F) for
absorption, the volume of distribution (VD) and the plasma
protein binding (PPB) for distribution, and the clearance (Cl)
and the half-life (t1/2) for metabolism and excretion, each
derived from the measurement of drug concentrations in blood
or plasma. These experimental properties, although they may
vary broadly between individuals, translate the drug interactions
with the organism, which depend on the physicochemical
properties of the drug such as the ionization state or the
lipophilicity, to name just a few.1 Pharmacodynamic and
pharmacokinetic parameters are optimized during the drug
discovery process relying on medicinal chemist experience and
sometimes with the assistance of predictive models.2−4 To
foster the development of improved methods, a database and

four manually curated data sets built from the Drugs@FDA
data files are proposed.5 e-Drug3D database is updated once a
year using a semiautomatic method to update information on
registered drugs and a manual processing for newly approved
molecules.6 A classification of drug names by the year of first
approval is proposed on the home page; it aims to follow the
evolution trend of approved small molecules over the years. For
example, 31 drug structures were approved in 2015 and only 13
in 2016. The list of FDA products that are not registered in the
database (biologics, contrast agents, electrolytes, etc.) are also
made available.7

Over the years, several drug information databases have been
designed: DrugBank,8 ChEMBL/Drugs,9 SuperDrug,10

IDAAPM,11 or DrugCentral.12 These databases are useful
resources on approved and experimental drugs for various
reasons, which include drug and off-label indications, contra-
indications, dosage, bioactivity profiles, drug metabolism, to
name just a few. However, except for the DrugBank, these
databases do not report the experimental pharmacokinetic
parameters, and none have explored the differential character-
ization of the structure of approved molecules and their active
metabolites (Table S1). The active metabolite of the
administrated drug is sometimes the only one to bind the
primary target, and in some cases, both can possess biological
activity. This information is required for those who want to
establish meaningful structure−activity relationships. In addi-
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tion, the experimental pharmacokinetic parameters may be that
of the drug and/or the active metabolite. For example, the
bioavailability value is that of the administered drug structure,
whereas the volume of distribution may be that of the active
metabolite. This distinction cannot be performed by automatic
processing of the drug label files because no such formalism
exists. A case-by-case manual search is therefore needed. Of
another significance, it is important to know which molecular
structure will be tested in a biological assay, for example, in the
case of a drug repurposing campaign, and, if needed, how the
active metabolite can be generated.13 In this database, the
structures of active metabolites are therefore stored with their
associated experimental properties as described in the drug
label. Each molecular structure was manually cross-checked
twice with the SciFinder/CAS database. In the present
database, links were created between “mother” and “daughter”
molecules. This lineage makes it possible to display the group
of structures during browsing as well as to include the
information in the derived data sets. One hundred and eighty-
six such groups are listed online.14 The analysis of this data set
shows that 26% of drug structures are or have an active
metabolite.
Pharmacokinetic Data Set. At present, there are few

published pharmacokinetic data sets: PK/DB,15 PKKB,16 and
the review by Obach et al.17 PK/DB contains pharmacokinetic
information for 1389 small compounds incorporating structur-
ally diverse drug-like and lead-like molecules extracted from the
literature. The database is available online for browsing, but
authors do not offer downloadable structure−property data
sets. PKKB provides pharmacokinetic information for 1685
drug and drug-like molecules and offers structure−property
data sets containing Caco-2, LogBB, P-gp inhibitory, human
intestinal absorption, and oral bioavailability values that may be
complementary to this pharmacokinetic data set. At the time,
the study by Obach et al. provided the largest publicly available
data set of human pharmacokinetic data (VD, Cl, fu, MRT, and
t1/2) for 670 drug compounds.17 The complete list of molecules
with pharmacokinetic data, full references, and comments by
the authors are available as supplemental data, but molecular
structures are not provided. Nevertheless, in this work, the
extracted pharmacokinetic parameters were systematically
crosschecked with theirs. Four hundred and twenty-two drugs
were common to both data sets.
To offer a large and high-quality collection, several

experimental pharmacokinetic properties were manually
extracted from drug labels, including the volume of distribution
(VD), clearance (Cl), plasma protein binding percentage
(PPB), terminal half-life (t1/2), bioavailability (F), maximal
concentration of drug in the blood (Cmax) and time to reach the
Cmax (Tmax), route(s) of administration, and the comment on
the experimental solubility. For cases where there was no access
to the label file or if the information was missing, these
parameters were searched for in the review by Obach et al.,17 in
the French drug registry Vidal,18 or in the literature. The
number of experimental values for each parameter is listed in
Table 1. Figure 1 presents univariate statistics for four
experimental pharmacokinetic properties.
Volume of Distribution. VD is a nonphysiological term

that represents the apparent volume into which a drug is
distributed based on the concentrations measured in the blood.
The approximate physiological volumes of body fluids are 40 L
in an adult (25 L intracellular fluids, 15 L extracellular (12 L
interstitial + 3 L plasma)). In the present data set, VD values

are expressed as liters. At the upper extreme limit, the drug
Raloxifen has a VD value of 152 620 L, indicating a low blood
concentration and an extensive level of tissue partitioning. At
the lower extreme, Succinylcholine has a value of 0.14 L,
indicating that the drug is concentrated in the blood and does
not diffuse well in the whole organism. The mean and median
values of this data set are 914 and 93 L, respectively. The
majority of drugs (75%) have a VD value less than 300 L, and
30% have a value less than 40 L. VD is one of the fundamental
PK parameters of drug candidates since it, together with
clearance, determines the half-life that affects the dosing
regimen of the drug.19 The present experimental collection is
expected to be of great use to assess and improve predictive
models for VD.4,20,21

Clearance. The clearance Cl is the volume of blood that is
cleared of the drug per unit of time. The approximate blood
flow through the liver for adults is 72 L/h. Cl values range from
0.014 (Cytarabine, an antineoplastic) to 6900 (Alprostadil,
prostaglandin E1) L/h. The mean and median values for this
data set are 67 and 17 L/h, respectively. The majority of drugs
(75%) have Cl values of less than 46 L/h, and 86% have values
of less than 72 L/h. Clearance is an important pharmacokinetic
parameter that is still difficult to model because it involves the
prediction of the compound metabolic stability.4,22 Never-
theless, computational approaches can be successful in
predicting the most probable metabolized sites of structures.3

Table 1. Property Titles and Number of Experimental Values

title property number

ID e-Drug3D ID 1852
name INN name 1852
CASRN Chemical Abstract number 1850
year year of approval (if identified) 1578a

status if “discontinued” 382b

Pharmacokinetic Data Set
is_a_metabolite contains mother’s ID 241c

has_a_metabolite contains daughter’s ID 264c

route routes of administration 1693d

VD volume of distribution (liter) 951
Cl clearance (liter/hour) 939
t1/2 half-life (hour) 1276
PPB plasma protein binding (%) 1061
F bioavailability (%) 524
Cmax maximal concentration in blood 766
Cmax_unit Cmax unit 766
Tmax time to reach the Cmax (h) 745
solubility comments on solubility 957
Pharmacodynamic Data Set
primary target name of the primary target 1653
unified set of
targets

ChEMBL, DrugCentral, and canSAR
molecular drug targets35

1732

ATC code(s) WHO ATC classification codes 1626
Registration Data Set
natural compound KnapSack ID, if it exists 78
FDA approvals NDA numbers, commercial names, and

companies
1693

class general information on the therapeutic
indication

1852

aYear = 0 when there is no identified year of approval or if it is an
active metabolite without a NDA number (FDA approval number).
bDiscontinued structures are no longer marketed but still possess a
NDA number. cThirteen drugs are in both categories. dThe 159 absent
structures are active metabolites without NDA number.
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The modification of these metabolic liable sites may improve
the intrinsic clearance of a molecule together with the VD and
half-life as shown in the example of the drugs Betaxolol and
Metoprolol.19,23

Half-Life. The half-life (t1/2) is the period of time required
for the concentration or amount of drug in the body to be
reduced by one-half. After the passing of 7 half-times, the drug
is 99% eliminated from the body, assuming a single dose.
Therefore, a t1/2 value lower than 5 means that there is an
almost complete clearance over 24 h. In the present data set,
40% of drugs possess a t1/2 value lower than 5 h. Half-life values
range from 0.03 (∼2 min) for Mivacurium to 87 600 h (∼10
years) for Alendronate because this drug is sequestrated into
bone. The mean and median values for this data set are 107 and
7 h, respectively. This property is not usually predicted by
quantitative structure−activity methods, but it is part of
physiologically based pharmacokinetic modeling (PBPK)
approaches.4,24,25 PBPK models incorporate in vitro physico-
chemical and biochemical data in a physiologically based
approach to predict plasma concentration−time curves.

Plasma Protein Binding. Recently, Liu et al. argued that
PPB should not be optimized during drug design because
theoretical analyses and experimental observations show that
low plasma protein binding does not necessarily lead to high in
vivo unbound plasma concentration.26 In line with their
observations, the analysis presented here of the distribution
of PPB values shows that 50% of drug structures have a value of
PPB greater than 83%, and 32% have a value of PPB greater
than 95%.

Maximal Concentration in Blood. The maximal concen-
tration in blood values (Cmax) spans a wide range varying from
711 pM for the oral antiparkinsonian drug Bromocriptine to
millimolar concentration for the antihyperammonemic oral
drug Phenylbutyrate and the oral/injected antifibrinolytic
Aminocaproic acid. For the 754 drugs in the millimolar and
nanomolar concentration range, the median and average Cmax
values are 513 and 35 μM, respectively. These concentration
values are comparable to that of alpha-1 acid glycoprotein in
plasma (17.5 μM) and human serum albumin (600 μM).27,28

In this data set, 417 drug structures fall in the micromolar
range with a mean Cmax value of 64 μM, and 337 compounds
fall in the nanomolar range with a mean Cmax value of 179 nM.
Cmax is not a property intended for quantitative structure−

activity modeling. Its interest lies in the evaluation of the
maximum concentration reached at time Tmax by the
therapeutic agent. The common value of Tmax is approximately
2 h. Cmax values give an indication of the possibility of
interaction with other proteins and/or off-targets whose affinity
is of the same order of magnitude.29−31

Solubility. Through extensive mining of drug labels,
comments on the experimental solubility were found for 957
drugs structures. This analysis allowed the categorization of the
data into two groups: those that are characterized as “insoluble,
not soluble, slightly, sparingly, or poorly soluble”, or with a
solubility value less than <1 mg/mL in water, and the others.
The first group is represented by 56% of compounds (540
drugs) and the second by 44% of compounds (417 drugs). In
contrast to common belief, many approved drugs are not
soluble in water32 despite the fact that more than 75% of
compounds in both groups possess an oral route of
administration. Many predictive solubility methods have been
developed, but the results are far from satisfactory,3,33 and other
alternatives to optimize the solubility have been proposed.34

Complementary Data Sets. In addition to the structures
and pharmacokinetic parameters, information on their primary
target and the history of their marketing was assembled.

Figure 1. Univariate statistics for experimental PK parameters: (a) VD,
(b) Cl, (c) t1/2, and (d) PPB. The number of values, the range, the
mean, the medium, the first quartile, the third quartile, and the 95th
percentile values are indicated under the graph.

ACS Medicinal Chemistry Letters Letter

DOI: 10.1021/acsmedchemlett.7b00462
ACS Med. Chem. Lett. 2018, 9, 204−209

206

http://dx.doi.org/10.1021/acsmedchemlett.7b00462


Pharmacodynamic Data Set. The name of the primary
drug target and/or the mechanism of action were manually
extracted from drug labels or mined from the literature.
Additional target annotations were extracted from the recently
released unified set of drug efficacy targets.35 These assign-
ments include links to the ChEMBL and UniProt databases to
facilitate drug-target analyses like, for example, docking studies.
Next, the WHO Anatomical Therapeutic Chemical (ATC)
codes were automatically retrieved by matching the drug
names.36 ATC codes were found for 1626 drug structures. As
expected, some active metabolites, old molecules, and newly
approved drugs were not indexed. ATC codes allow the
association of drugs with their primary target, therapeutic
class(es), and indications. The pharmacodynamic information
is of value when studying specific groups of drugs (antibiotics,
antihypertensives, etc.) or protein targets (G-protein-coupled
receptors (GPCRs), nuclear receptors, etc.). Figure 2 shows the

distribution of drug structures into the ten most commonly
drugged protein families. This distribution is consistent with
previous studies.37,38 Enzymes constitute the largest group of
primary targets containing 32% of all molecules. GPCRs and
ion channels are the second (24% of drugs) and third (12%)
largest target classes, respectively.
Registration Data Set. As noted above, information from

the Drugs@FDA data files for each registered drug structure
were automatically collected.5 These files contain general
information on approved drugs: INN name, application
number (also called NDA number), submission date,
commercial names, sponsor name, marketing status, routes of
administration, and dosage. These files allowed extraction of
years of approvals and tracing the history of the marketing
authorization by the FDA.
As indicated by the associated references, one of the

applications is the possibility to analyze the evolution over
the years of the number of approved drugs,39,40 the
physicochemical properties,41 the structural diversity,42 the
privileged scaffolds,43 the occurrence of natural products,44,45

the targeted protein families,37,38 the occupancy of the
therapeutic areas,46−48 or the organizations obtaining approvals
for new drugs or generics.40

Drug Labels. A label contains an accurate summary of the
essential scientific information needed for the safe and effective
use of a FDA-approved drug. As previously indicated, the
pharmacokinetic and pharmacodynamic parameters from these
files were extracted. Each approval has a unique number
(NDA) that is used to name the label file. Label files are in PDF

format and are usually available online at the U.S. Food and
Drug Administration Web site (see ref 49), where the last
character ‘X’ must be replaced by the NDA number.
In order to facilitate the analyses, the different label files for

each drug structure in the registration data set were
automatically collected and stored and a compressed directory
available for download was generated. Of note, some drug
labels, especially for old molecules, may no longer exist at the
FDA Web site, but they may be viewed at Dailymed50 or
Drugs.com.51 Therefore, one may easily access the label file of
the drug from which experimental information was extracted. In
further studies, it would be interesting to use and assess
techniques that automatically extract formalized information
from PDF files to search for additional properties such as
adverse drug reactions or drug metabolism enzymes.52

In summary, several structure−activity/property data sets
were created and aimed to perform retrospective analyses of
past successes and to foster the development of improved
predictive methods relevant to the drug discovery and
optimization process. In particular, to the best knowledge, the
pharmacokinetic data set containing chemical structures,
experimental parameters and active metabolite lineage
represents the largest publicly available collection tailored to
meet the requirements of structure−activity relationship
studies. It is believed that these chemistry-oriented collections
should provide valuable resources with a sufficient number of
high quality experimental data for further analyses and
developments in the field.

■ EXPERIMENTAL PROCEDURES
e-Drug3D Database and Web Server. The implementation and

organization of the database as well as the web interface were
described previously.6 At present, the updated database contains eight
additional pharmacokinetic parameters (comment on solubility, VD,
Cl, t1/2, PPB, F, Cmax, and Tmax) and an additional pharmacodynamic
annotation extracted from the ChEMBL, DrugCentral, and canSAR
joint effort.35 The web server further evolved with a new structure
editor (JSME53) and with new interactive visualization editors
(ChemDoodle54 and JSmol55) to replace Java applications. e-
Drug3D gives access to the structures of drugs and active metabolites
approved from 1939 to August 2017. Each molecular structure
possesses a unique identifier (ID) that identifies its chemical structure
and properties across data sets. The database is updated every year,
and it currently contains 1453 unique INN names that are represented
by 1852 different structures because active metabolites and
enantiomers have their own entry in the database. All enantiomers
possess the same INN name.

Structure Data Set. The structure data set was generated as
previously described.6 It contains 1852 molecular structures with 3D
coordinates in SDF format. Each molecular structure was manually
cross-checked twice with the SciFinder/CAS database and with the
molecular structure depicted in the drug label. The datablock of the
SDF file contains the INN name of the drug, the CAS registry number
(CASRN), the ID, and the status, if the drug is discontinued. When
the INN name of the active metabolite did not exist, its name was set
by adding the prefix ‘M’ to the name of the associated marketed drug
such as, for example, SELEXIPAG and M SELEXIPAG, its active
metabolite. All data sets are available to download from http://
chemoinfo.ipmc.cnrs.fr/MOLDB/.

■ ASSOCIATED CONTENT
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Figure 2. Primary target family distribution of the 1852 drug
structures.
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